# config file path
CONFIG_FILE_PATH = "~/.oci/config"
# config file profile
CONFIG_PROFILE = "DEFAULT"
# region identifier of DLS Dataset
REGION_IDENTIFIER = "ap-seoul-1"
# service_endpoint
SERVICE_ENDPOINT_DP = f"https://datalabeling햐-dp.{REGION_IDENTIFIER}.oci.oraclecloud.com"
# ocid of the DLS Dataset
DATASET_ID = "[데이터셋의 OCID를 이곳에 작성합니다.]"
# the no of processes to be used for parallel execution by default is set to maximum no of processors in the system
NO_OF_PROCESSORS = mp.cpu_count()
# Type of Annotation
# Possible values for ANNOTATION_TYPE "BOUNDING_BOX", "CLASSIFICATION"
ANNOTATION_TYPE = "CLASSIFICATION"
##############################################################################################################
# If ANNOTATION_TYPE is "CLASSIFICATION" edit classification_config.py
# If ANNOTATION_TYPE is "BOUNDING_BOX" edit bounding_box__config.py
# maximum number of DLS Dataset records that can be retrieved from the list_records API operation for labeling
# limit=1000 is the hard limit for list_records
LIST_RECORDS_LIMIT = 1000
# the algorithm that will be used to assign labels to DLS Dataset records
# Possible values for labeling algorithm "FIRST_LETTER_MATCH", "FIRST_REGEX_MATCH", "CUSTOM_LABELS_MATCH"
LABELING_ALGORITHM = "CUSTOM_LABELS_MATCH"
# an array where the elements are all of the labels that you will use to annotate records in your DLS Dataset with.
# Each element is a separate label.
LABELS = ["dog", "cat"]
# use for first_match labeling algorithm
FIRST_MATCH_REGEX_PATTERN = r'^([^/]*)/.*$'
# For CUSTOM_LABEL_MATCH specify the label map
LABEL_MAP = {"dog/": ["dog", "pup"], "cat/": ["cat", "kitten"]}
# the path of the csv file
PATH = "/Users/puneetmittal/Desktop/input_data.csv"
이 글은 개인적으로 얻은 지식과 경험을 작성한 글로 내용에 오류가 있을 수 있습니다. 또한 글 속의 의견은 개인적인 의견으로 특정 회사를 대변하지 않습니다.
Younghwan Cho AIML
oci data science data labeling python bulk labeling